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ABSTRACT 

We give the "boundary version" of the Boggess-Polking C R  extension 

theorem. Let M and N be real generic submanifolds of C n with N C M 

and let V be a "wedge" in M with "edge" N and "profile" E C T N M  in 

a neighborhood of a point Zo. We identify in natural  manner  

T N M  ( k TCM[N T M  > T M X  
> TC N ' TOM j 

and assume that  for a holomorphic vector field L tangent to M and 

verifying L(zo) + L(zo) E k(EZo) we have that  the Levi form j~(L)zo  := 

j ( l [ n , L ] z o )  takes a value ivo e TMXzo,  iVo 7 ~ 0 (say ]Vo[ = 1). Then 

we prove that  C R  functions on V extend V¢ to a wedge V1 "attached" to V 

in direction of a vector field iV such that  ]pr(iV(zo)) - ivo] ( ¢ (where pr 

is the projection pr: T N X  --~ TMX]N).  We then prove that  when the Levi 

cone "relative to E" iZ~ = convex hull {j£(L)zo tL(zo)+L(zo) C k(E)zo } 
is open in T M X ,  then C R  functions extend to a "full" wedge with edge N 

( that  is, with a profile which is an open cone of TNX) .  Finally, we prove 

that  if f is defined in a couple of wedges i V  with profiles + E  such that  

iZE ---- TM X ,  and is continuous up to N, then f is in fact holomorphic 

at Zo. 

Let X be a complex manifold of dimension n and let M be a C 5 generic CR 

manifold of X, N a generic C 5 submanifold of M, and V a wedge of M with 

edge N. This is by definition the diffeomorphic image of a straight wedge of R 2n 

that can be described as follows. In a coordinate system in a neighborhood of 

Received January 2, 2000 and in revised form October 30, 2000 

19 



20 L. BARACCO AND G. ZAMPIERI Isr. J. Math. 

Zo = 0, we wri te  X -~ C ~ = C ~ x C l - m  x C ~- I  wi th  coord ina tes  (z ' ,  z" ,  w) and  

also use the  no ta t ions  z = (z ' ,  z")  and  z = x + iy. We in t roduce  a new p a r a m e t e r  

t C R l - m  and an  open convex cone P C R l - ' ~ .  For a convenient  vector  funct ion 

h = ( h i ) i = l  . . . . .  l of class C 5 in the  var iables  (x, t, w) E R l x R 1-'~ x C ~- l  we have 

V: y = h ( x , t , w )  for t e F,  
(1) M :  y = h(x, t, w) for t C ~ l - , ~ ,  

N: y = h(x, O, w). 

Moreover,  we can suppose  t ha t  under  our choice of coord ina tes  we have 

(2) 

and  

(a) 

O h(zo) =O h(zo) =O h(zo) = O, 

Ot¢hi(zo) = { 5Oij for m + l <_ i , j  <_ i _< m. 

Hence if we define F :  R I x R  l - m  x C  n- I  -+ C n by F ( x , t , w )  : =  ( x + i h ( x , t , w ) , w ) ,  

t hen  F has (real) r ank  2n - m and we ob t a in  

(4) M = F ( R  z × R  l - m  × c n - l ) ,  V = F ( R  l x F x C n - l ) ,  N = F ( R  l × {0} × C n - l ) .  

Remark: Note  t h a t  by  (3) and  by  the Impl ic i t  Func t ion  Theorem,  we can solve 

wi th  respec t  to  t the  last  l - m equat ions  Yi = hi (x, t, w) i -= m + 1 , . . . ,  l and  get  

(5) t = t(x,  y", 

We plug (5) in the  first m equat ions  of M and define 

h i ( x , t ( x , y " , w ) , w )  f o r i = l , . . . , m ,  
(6) g i ( x , y " , w ) : =  hi(x ,O,w)  f o r i = m + l , . . . , I .  

This  yields 

M = {Yi = g i (x , y" ,w)  i = 1 , . . . , m } ,  
(7) N = {Yi = gi(x, y", w) i = 1 , . . . ,  1}, 

v = = i =  1 , . . . , m ,  y " e  

where Ex,~ is the  wedge in the  y" -p lane  wi th  ver tex  {y" --  (gi(x,  0, w))i=m+l ..... l} 
defined by Ex,w -- (g i (x ,F ,w))  i. Thus  we have now a wedge condi t ion  "y" E 
E, ,w" ins tead  of a s impler  cone condi t ion  "t E F" .  This  is why the ad junc t ion  

of  the  p a r a m e t e r  t is convenient  for the  purpose  of the  present  pape r  and  we will 

use (1) r a the r  t han  (7). 
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We shall denote by T (resp. T c) the tangent (resp. the complex tangent) 

bundle. Note that TzoN = R~,, × Rt~., m × C~o -1, TzoM ~- ]R~ × C~7, m × ~y~-l, 

T~oV ~_ a ~  × (]~7, m + i r e , )  × c n - l .  

By the genericity of N we have an identification 

(8) i T g  N T M  
Tc N -+ T N M  

given by [ia] (modulo T e N )  ~-~ [ia] (modulo TN) .  For z close to zo we also have 

an identification 

(9) TN Mz --+ R t -m  

given by 

(10) [ia] ~ (~e < Orj(zo),ia >)j=m+l ..... I 

(where we have used the notation rj = yj - hi). 

In particular, if we evaluate at Zo, (10) is induced by the projection (z', z", w) ~-~ 

y" (because the equations rj  are normalized at zo). Hence the inverse 

]~t-m ( i T N A T M ~  

\ TCN )Zo 

of the composition of (8) and (9) is given by b ~-~ (0, ib, 0), where 0 stands for the 

z ~ and w entries. (We shall often write ib instead of (0, ib, 0).) In particular, this 

induces first an embedding F ~ (TNM)~ ° and then also 

( i T N S T _ M  ~ ( T C M ~  

F ~ \ Tc  N ] zo ~ \T----~N] Zo 

PROPOSITION 1: (i) We can choose coordinates such that M,  V and N can be 
represented as in (7) and, moreover, 

a~ (x ,y" ,w)  = & 0 ~ g ~ ( 0 ) ( ( ~ " , w ) , ( ~ " , ~ ) )  + o ( ~ ' , z " , ~ )  ~ vi  < .~. 

(ii) Let b E ]R t-m \{0} ,  c C C n-t  . Then we can arrange that, under a choice of 

coordinates, ali the above conditions are full~lled and, moreover, ib + c is either 

iem+l or iem+l q- el+l, where ej is the j - th  unit vector. 

Proo~ (i) It is a classical result on the normal form of a C R  manifold (cf. [4] 

p. 109) that  for a transformation of type 

{ ' = z' - P~(z', z", w) (P2 a polynomial of degree 2) 
~11 = z" 
zb - -w 
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we can give the required form to g without destroying the properties of h. 

(ii) This is obvious by means of a linear change of coordinates in ~-,,m and 

~ - l .  i 

Using the identification F ¢-+ (TNM)zo, b ~ [ib] we shall think of iF as the 

"supplementary tangent directions of V with respect to N".  In the terminology 

of [8] we shall say that V is "attached" to N at Zo in the directions of iF. (Thus 

M will be attached in all directions of iR l- '~.) 

We shall also use the identifications TNX ~- ]~l and TMX ~ }~m given by 

[ia] ~+ @e < Orj, ia >)l<j_<l and [ia] ~-+ (~e < Orj, ia >)l<_j<_m respectively. We 

shall also denote by pr the projection ]~l __+ Rm. 

THEOREM 2: Assume N, M, V of c/ass C 5 and (OOrj (Zo) (ib + c, ib+c))j=l ..... m 

0 for b E F U {0}, c E C n-l .  We denote by Vo the above vector and suppose 

without loss of generality Ivo] = 1. Then VE there exists a vector field ]?(z) E •z, 

z C V U N,  with Ipr(V(Zo)) - VoI < e, and a wedge V1 of class C 3,a attached to 

V in direction iV such that any CR  function on V extends to be CR  on V1. 

The proof is given after all statements. When M is a hypersurface and N is 

totally real, the above statement is equivalent to [6, Th. 1.4]. 

Important Remark: Theorem 2 has in fact an intrinsic statement. First we can 

define intrinsically the "profile" of V by 

T ( V  U N)IN 
EtN - T N  ' 

an open cone ofTNM.  I fV  is parametrized as in (1), then we shall have ~Zo = iF. 

(We shall then say that V is attached to N in the directions of ~.) Also, the Levi 

form can be intrinsically defined by ~[L,  L] (modulo TCM) for all L E TI'°M. 
TM Using the identification This is a real form which takes values in T--V~M" 

T M  J~TMX 
TC M -  

(induced by the multiplication by i) we shall rather consider j(~i[L, L]) (modulo 

T M )  in TMX.  
TC M 

Thus assume that  for [ib] E Z~o C TNM identified to lib] E Wc-~, and for 

a vector field L E TI ' °M with L(zo) + L(zo) = ib + e, c C TCN, we have 

j (~ [L ,  L]) # 0 in TMX. Then all CR functions on V will extend in the direction 

of a vector field iV with ipr(iV(Zo)) - j (~[L ,  L](Zo)} < e, pr being the projection 

TNX --+ T M X I N  ). 
We give now two corollaries but before we need the following 



Vol. 127, 2002 THE BOGGESS-POLKING THEOREM 23 

De[inition 3: For F C ~7,  m we define 

Zr  := c .h . (OOrj(zo)( ib+c,  i b + c ) ) j = l  ..... m Vb C F, Vc E C ~-l ,  

where c.h. stands for convex hull. 

Then F + Zr  will be a cone o f R  l -m × IR m (open if Z r  is open in Rm). 

COROLLARY 4: A s s u m e  Zr  is open in R m. Then for all Z ~ CC (Zr)Zo there 

exists an open cone 2 '  C IR k whose projection in R rn is Z ' ,  such that  any CR 

function on V extends  holomorphically to ( (V  gq B )  + iZ')  V) B for a suitable 

neighborhood B o f  Zo. 

The proof will be given at the end of the paper. We consider now the antipodal 

cone - F  to F and let + V  be defined by y = h(x,  t, w) for t E +F.  

COROLLARY 5: Assume  Zr  = R m. Then any C R  function f on V + U V - ,  

continuous up to N ,  extends holomorphically to a full neighborhood of  zo. 

Proof'. We know that  f extends to 

where Zi, = 1, 2 are cones of R ~ whose projection in ~m is the full ~m. We have 

where " '  " means ally proper subcone. But ( F + Z 1 ) '  (resp. (-F+22) ')  is a conic 

neighborhood of F'  (resp. - F ' ) .  It  follows that  c . h . ( r + 2 1 ) ' U ( - r + 2 2 ) ' )  = ~ and 

the conclusion follows, e.g., from the Edge of the Wedge Theorem by Ayrapet ian-  

Henkin. | 

Remark  6: When M is a hypersurface and N is totally real, Corollary 5 is 

contained in [6, Th. 1.2]. In fact, our assumptions imply that  there exists a 

vector in F which is isotropic for the Levi form of M (in addition to the couple 

of vectors of opposite sign). 

We shall consider analytic discs in C n , C 3,~ up to the boundary (0 < ~ < 1). 

These are described by a map A: A -+ C '~, T ~-~ A(T) with A holomorphic in A 

and C 3,B in /~ (here T = re ~e is the variable in the standard disc /~). We shall 

denote by A both the discs and their parametrizations. 
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Proof  of  Theorem 2: We assume ib = iem+l,  c : el+l; our hypothesis  is therefore 

2 02 (02m+lZm+lgJ + ~t+~w,+~gJ -- 2"~mO2z~+~,+~gJ) # 0 for some j.  

We choose coordinates  such tha t  the vector  with the above components  is the 

first unit  vector  el in the ]~m_plane. We a t tach  a family of discs A to V [J N with 

t components  t(T) = ~ e ( 1  - T)em+t and w components  w(T) = ~(1 - T)el+l. 

For this purpose  we solve the Bishop equat ion 

(11) Ui(T) = - T l h i ( u ( r ) , t ( r ) , w ( r ) )  for i = 1 , . . . , l ,  T e 0A 

where T1 is the Hi lber t  t r ans form normalized by the condit ion Tlu(1)  = 0. Since 

the hi 's  are C 5, it is well known tha t  this can be solved in the Banach  space C 3,~, 

for small  da t a  t(~-) and w(~-), by the aid of the implicit  function theorem (cf. [4]). 

I f  we set z = u + i v  with v = Tlu and A = (z; w), then A extends holomorphical ly  

f rom 0 A  to A and verifies OA c N U V  due to vloA = h(u , t ,w) loA with t E F. 

Note t ha t  A = {zo} for ~7 = 0  and hence OrA = 0 for ~ / =  0. Also, it is easy 

to check tha t  A is C 3,~ Va < ~, in bo th  ~- and y. (The shrinking from fl to a 

depends on the fact tha t  T1 does not preserve C k,~ smoothness  in the parameters ;  

cf. [7].) In  par t icular ,  O~A is C 2 in ~. We set ~- = re ie and consider the Taylor  

expansion of OvA in 7/: 

T] 2 
(12) OvA = (OrO, TAI,7=o ) ~1 + (OrO2,TAI~=o) -~ + 0(772) • 

We want  to prove tha t  for sui tably  small  7/ the project ion of OrA in the iRy m,- 

plane is close to -2 ie l ;  in part icular ,  A is t ransversal  to M.  By (2) and (3) and 

since Al~=o = {Zo}, when ~ /=  0 we have Oxjhi = O~khi = OYi, j , k ,  Othhi = 5hi 

for h, i = m + 1 , . . . ,  1. In part icular ,  differentiation of V(T) = h(U(T), t(T), W(T)) 

along 0 A  and evaluat ion for ~ /=  0 yields 

(13) o,v~ = 0 v i  # m + 1 w e A,  0 , V ~ + l  = ~e (1  - ~) 

(due to 0tm+~hm+~(0) = 1). By differentiating in ~/ the  identi ty u = -T~v  and 

interchanging 0~ with  T1, we get 

(14) Ovui = O Vi # m + l. 

I t  follows tha t  

(15) ovo,(u~ + iv~)J,-_o = o vi # m + 1. 
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We prove now that 

( 1 6 )  . . . . .  : 

To see this we solve t = t(x, y", w) on M and write, as in the initial remark, 

gi(x ' ,z" ,w) :-- h i (x , t (x ,y" ,w) ,w) ,  i = 1 , . . . , m .  Recall that  according to 

Proposition 1, we can choose g which coincides with its Levi form apart from 

an error of order higher than 2. Since the discs A are attached to V U N, whence 

to M, then vi = gi must hold. Double differentiation in 7/yields 

(17) O~,vi[v=o = E (O~zp~q giOvzpov2q 
md- l ~_p,q~_l(h,k 

+ 2~e(O2~2qgiOn2qOnWk) + 02wh~giOvWhO, Wkln=O) . 

Since OvZp]v=o = 0Vp # m + 1 and OvWk[v=o = 0 Vk # l + 1, we get 

~- 2~eO2rnq_,~jlq_ig, O, Zm-~,O?~)l-~l JC 02w,+l~j,+lgilO, Wl+,] 2. 

On the other hand, we have 0uz,~+,]v=0 = O~]Um+ , ÷ iOvt,~+l]n=o = i(1 -7-) due 

to (13), and we also have Ovw~+,lu=o = 1 - T. It follows that  

(18) (OOgi(iem+l ÷ el+l, iCm+l ÷ e l + , ) 1 1  - -  ~ 1 2 ) ~ = ,  . . . . .  ~ = (11  - -  ~ l ~ ) ~ , .  

Note that ([ 1 - ~-I 210h) = (2-- 2 COS(0)) = 2(Ne(1 -- T)[0A). Hence by combining 

(17) and (18) we get 

(19) 02uvi = 2e,Ne(1 - T) (all over A). 

Differentiation of (19) in r yields (16). Hence A points to -OrA whose normal 

projection to M is ie,. We go back to (12), recall (15), and conclude that 

(20) pr(0~v) = -e,~? 2 + o(712). 

We produce now the manifold V1 in the statement. We denote as always by 

Z(T) = U(T) ÷ iV(T), resp. w(~-), resp. t(T) the z, resp. w, resp. t components of 

A; they are related by vj(T) = hj(U(T),t(T),W(T)), 1 <_ j <_ I. For any So • ~ ,  

Wo • C~ - l ,  and to C F, we solve the Bishop equation 

(21) ui = -T lh i (u , t (T)  ÷ to,W(T) + Wo) + So. 

This produces a family of discs A = Avosoto~o (T) such that,  for any fixed ~o, the 

map 
D :  { 1 - e < r < l } x R ~ ,  x F t x C ~  -z -9 

(r, So, to, Wo) ~-~ Ano~o,o~, o(r) 
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has real rank 2n - m + 1 (because the A's are transversal to M with a uniform 

estimate from below for the angle between M and A when T = 1). We define V1 

to be the range of D in a neighborhood of Zo = 0 for all small 70- It is clear that  

V1 is a wedge such that  V C V1 and which points to the directions of the vector 

field V := -OrDIr=z. Also, by (20), for all c and for suitable ~?, we can arrange 

that  Ipr(];(Zo)) - ell < ~. 
We are ready to conclude. By a slight variant of the Baouendi-Treves's Ap- 

proximation Theorem, there is a neighborhood B of Zo such that any CR function 

f on V A B is uniformly approximated by polynomials over any compact sub- 

set. To prove this, one chooses a totally real maximal submanifold of N, e.g., 

{y = h(x, 0, ~ew)}, "pushes it inward V" by choosing tl  E F (small) and defining 

S = {y = h(x, tl, ~ew)}, and finally takes convolution of f with the heat kernel 

along S. Next, we take any To, so, to, Wo but require in addition that  they are 

so small that  OAnoso,o~o C (V U N)  ~ B. But then, for any e, for any F I c c  F 

and for a suitable compact subset K¢,r, c C  V • B, we have 

OA~o~oto~o C K~,r, if Ito[ >_ ~, to E F'. 

Then by the maximum principle on the discs AnosotoWo, the sequence of poly- 

nomials which approximate f in K~r, will converge in the whole discs AnoSo,oW o 

and will produce the extension of f to 171. | 

Proof of Corollary 4: We choose t l  E F and replace V by 

Y5 :-- {y = h(x, 5tl + t, w) t E F} 

(with V~ n B c c  V, since F is open and convex). Thus f is now continuous up 

to Na, the edge of Va. Next, we take a polyhedral approximation of Zr  that is a 

family of vectors ai E F such that the cone engendered by the ai's is proper in 

Zr.  By Theorem 2, f extends to a family of wedges V~i which point to additional 

directions 5i with [pr(hi) - n i l  < e for any i; moreover, the transversality of the 

5i to M is uniform with respect to 5. Since f is continuous in Na, we can apply 

the edge of the Wedge Theorem and obtain that f extends to a wedge V~ which 

points to all the directions of 2 '  CC c.h.{R+ai}. To conclude, we just let 5 -+ 0. 
| 

Remark 7: The above procedure of "pushing" V along 5tl in order to get conti- 

nuity of f in the edge has already been used by Tumanov in [8, Remark 2.5 and 

the proof of Corollary 2.7]. It is essential to remark that the approximation the- 

orem and the construction of analytic discs are stable under small perturbations, 

such as pushing V along tzh. 
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