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ABSTRACT

We give the “boundary version” of the Boggess—Polking CR extension
theorem. Let M and N be real generic submanifolds of C* with N ¢ M
and let V be a “wedge” in M with “edge” N and “profile” ¥ C Ty M in
a neighborhood of a point z,. We identify in natural manner

¢ TM|y TM ~
oM —Es , TuX
N TCN ’ TCM M

and assume that for a holomorphic vector field L tangent to M and
verifying L(2,) + L(zo) € k(2;,) we have that the Levi form j£(L);, :=
j(zli[L,fJ]zo) takes a value iv, € Tar X2, 1o # 0 (say |vo| = 1). Then
we prove that CR functions on V extend Ve to a wedge V1 “attached” to V
in direction of a vector field ¢V such that |pr(iV(z,)) —ive| < € (where pr
is the projection pr: Tw X — Tas X |n). We then prove that when the Levi
cone “relative to 7 iZy = convex hull {§L£(L)., |L{20)+L{20) € k(Z)z,}
is open in Ths X, then CR functions extend to a “full” wedge with edge N
(that is, with a profile which is an open cone of T X). Finally, we prove
that if f is defined in a couple of wedges £V with profiles £% such that
1Zs = Tam X, and is continuous up to N, then f is in fact holomorphic
at z,.

Let X be a complex manifold of dimension n and let M be a C® generic CR
manifold of X, N a generic C° submanifold of M, and V a wedge of M with
edge N. This is by definition the diffeomorphic image of a straight wedge of R2"
that can be described as follows. In a coordinate system in a neighborhood of
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2, = 0, we write X ~ C"* = C™ x C'™ x C"~! with coordinates (2’,z”,w) and
also use the notations z = (2/, 2”) and z = £+ ¢y. We introduce a new parameter
t € RI-™ and an open convex cone I' C RI=™. For a convenient vector function
h = (h;)i=1,..; of class C® in the variables (z,¢,w) € R* x R=™ x C*~! we have
Viy=h(z,t,w) fortel,
(1) M:y = h(z,t,w) forteR~™,
N:y = h(z,0,w).

Moreover, we can suppose that under our choice of coordinates we have

(2) 9:h(20) = Ouh(20) = Ogh(z,) =0,
and

‘ _J by form+1<4,j5 <],
() Bt hizo) = { 0 fori<m.

Hence if we define F: R x R-™ x C*~! — C* by F(z,t,w) := (z+ih(z,t, w), w),
then F' has (real) rank 2n — m and we obtain

(4) M = FR' xR xC* ), V= FR xI'xC"Y), N = F(R x{0}xC"").

Remark: Note that by (3) and by the Implicit Function Theorem, we can solve
with respect to t the last [ — m equations y; = h;i{z,t,w)i=m+1,...,] and get

(5) = t(l‘, yllv w)'
We plug (5) in the first m equations of M and define

, /" — h’i(mat(xa y”7 w),’U)) fori=1,...,m,
(6) gi(z,y", w) '_{hi(.’E,O,’w) fori=m+1,...,1L

This yields

M ={y; = gi(z,y",w) i =1,...,m},
(7) N = {Z/z = gi(xa y”aw) 1= 1, .. -,l}7
V={yi=gi(z,y",w)yi=1,...,my" € L0},

where £, ,, is the wedge in the y”-plane with vertex {y" = (gi(z, 0, w))i=m+1,...1}
defined by ¥, = (9i(z,I,w));,. Thus we have now a wedge condition “y” €
¥, instead of a simpler cone condition “¢t € I'". This is why the adjunction
of the parameter ¢ is convenient for the purpose of the present paper and we will
use (1) rather than (7).
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We shall denote by T (resp. T*) the tangent (resp. the complex tangent)
bundle. Note that T, N = R® x RZ™ x €271 T, M ~ R™ x C.™ x €2t
T,V ~R% x (R™ 44y x CvL.

By the genericity of N we have an identification

ITNNTM
given by [ia] (modulo TCN) — [ia] (modulo TN). For z close to z, we also have

an identification

(9) TNMz — Rl_m
given by
(10) [Za‘] = (éRe < 81"]' (zo)aia >)j=m+1,.,.,l

(where we have used the notation r; = y; — h;).
In particular, if we evaluate at 2,, (10) is induced by the projection (2', 2, w) —
y" (because the equations r; are normalized at z,). Hence the inverse
iITNNTM
Rl—m Y e S eielinl
(7).
of the composition of (8) and (9) is given by b+ (0, b, 0), where 0 stands for the

z' and w entries. (We shall often write b instead of (0,b,0).) In particular, this
induces first an embedding I' — (Tw M), and then also

po, (ITNOTMY T°M
TN 2 TN .
PropPOSITION 1: (i) We can choose coordinates such that M, V and N can be
represented as in (7) and, moreover,

gi(.’lr, ylly ’LU) = 5zazgi(0)((‘z"7 w)7 (Z”7 'lU)) + O(xlv Z"7 UJ)2 Vi S m.

(ii) Let b € RI=™ ~{0}, c € C*~'. Then we can arrange that, under a choice of
coordinates, all the above conditions are fullfilled and, moreover, ib + ¢ is either
t€m+1 OF t€my1 + €1y, Where e; is the j-th unit vector.

Proof: (i) It is a classical result on the normal form of a CR manifold (cf. [4]
p. 109) that for a transformation of type

{

g

IS Y

Py(2', 2", w) (P, a polynomial of degree 2)

~

i

N

=2 —
=
=w

=1
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we can give the required form to g without destroying the properties of A.
(1) This is obvious by means of a linear change of coordinates in R;T,m and

-l

Using the identification I' < (TwM),,, b > [ib] we shall think of I' as the
“supplementary tangent directions of V' with respect to N”. In the terminology
of [8] we shall say that V is “attached” to N at z, in the directions of iI". (Thus
M will be attached in all directions of iR!=™.)

We shall also use the identifications Ty X ~ R and Ty X ~ R™ given by
lia] — (Re < Orj,ia >)1<;<1 and [ia] = (Re < Orj,ia >)1<j<m respectively. We
shall also denote by pr the projection R — R™.

THEOREM 2: Assume N, M,V of class C® and (007;(2,)(ib + ¢, ib+c))j=1,...m #
0 for b € TU{0}, c € C*~!. We denote by v, the above vector and suppose
without loss of generality |v,| = 1. Then Ve there exists a vector field V(z) € R,
z € VUN, with |pr(V(20)) — v| < €, and a wedge V; of class C** attached to
V in direction 7V such that any CR function on V extends to be CR on V.

The proof is given after all statements. When M is a hypersurface and N is
totally real, the above statement is equivalent to [6, Th. 1.4].

Important Remark: Theorem 2 has in fact an intrinsic statement. First we can
define intrinsically the “profile” of V by

T(VUN)|n
T TN
an open cone of Ty M. If V is parametrized as in (1), then we shall have X, = ¢I".
(We shall then say that V is attached to N in the directions of ¥.) Also, the Levi
form can be intrinsically defined by £[L, L] (modulo TM) for all L € T*°M.
This is a real form which takes values in ;C%

T™ ;

T MéTMX
(induced by the multiplication by ) we shall rather consider j(2[L, L]) (modulo
TM) in Ty X.

Thus assume that for [ib] € %,, C TwM identified to [ib] € T, and for
a vector field L € T'M with L(z,) + L(z,) = ib+¢, ¢ € TN, we have
J(%1L,L]) # 0 in Ty X. Then all CR functions on V will extend in the direction
of a vector field iV with |pr(iV(2,)) — j(%[L, L](20)| < €, pr being the projection
ThX — TMX | N)-

We give now two corollaries but before we need the following

Zln

Using the identification
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Definition 3: ForT C R;T,m we define
Zr = c.h.(80r;(2,)(b + ¢,ib + ¢))j=1,..m VbET, Vee C*7},

where c.h. stands for convex hull.
Then T + Zr will be a cone of RI=™ x R™ (open if Zr is open in R™).

COROLLARY 4: Assume Zr is open in R™. Then for all Z’ CC (Zr),, there
exists an open cone Z' C R' whose projection in R™ is Z', such that any CR
function on V extends holomorphically to (V N B) + iZ') N B for a suitable
neighborhood B of z,.

The proof will be given at the end of the paper. We consider now the antipodal
cone —TI' to T and let £V be defined by y = h(z,t,w) for t € +T.

COROLLARY 5: Assume Zpr = R™. Then any CR function f on VT UV,
continuous up to N, extends holomorphically to a full neighborhood of z,.

Proof: We know that f extends to
(((v NB)+iZ;)N B) U (((v— N B)+iZy) N B)
where Zi, = 1,2 are cones of R! whose projection in R™ is the full R™. We have
(((V+ NB)+iZ))N B) U (((V‘ N B) +iZ3) N B) D
> ((N AB)+i(T +Z,))N B) U ((N N B) +i(=T + Z5)) N B)

where “’” means any proper subcone. But (I'+ Z;)’ (resp. (-T'+ Z5)') is a conic
neighborhood of " (resp. —I"). It follows that c.h.(I'+ 2 )'U(~T'+Z5)") = R and
the conclusion follows, e.g., from the Edge of the Wedge Theorem by Ayrapetian—

Henkin. |

Remark 6: When M is a hypersurface and N is totally real, Corollary 5 is
contained in [6, Th. 1.2]. In fact, our assumptions imply that there exists a
vector in I" which is isotropic for the Levi form of M (in addition to the couple
of vectors of opposite sign).

We shall consider analytic discs in C*, C*# up to the boundary (0 < 8 < 1).
These are described by a map A: A — C*, 7 +— A(7) with A holomorphic in A
and C*# in A (here 7 = re® is the variable in the standard disc A). We shall
denote by A both the discs and their parametrizations.
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Proof of Theorem 2: 'We assume b = e, 11, ¢ = €;4.1; our hypothesis is therefore

(0

Zm4+12m+1

g; + 02 g; — 2Smd?

W1 W41 Zm41Wi41

g;) #0 for some j.

We choose coordinates such that the vector with the above components is the
first unit vector e; in the R™-plane. We attach a family of discs A to VUN with
t components ¢(7) = nRe(l — 7)em+1 and w components w(r) = (1l — T)ep4.
For this purpose we solve the Bishop equation

(11) ui(T) = =Thhi(u(r), t(r),w(r)) fori=1,...,1, 7€dA

where Tj is the Hilbert transform normalized by the condition T3u(1) = 0. Since
the h;’s are C®, it is well known that this can be solved in the Banach space C32,
for small data ¢(7) and w(7), by the aid of the implicit function theorem (cf. {4]).
If we set z = u-+4v with v = Tyu and A = (2; w), then A extends holomorphically
from A to A and verifies 94 C N UV due to v|sa = h(u,t, w)|sa with ¢ € T.
Note that A = {2,} for n = 0 and hence 9,4 = 0 for n = 0. Also, it is easy
to check that A is C>* Ya < 3, in both 7 and 5. (The shrinking from 8 to «
depends on the fact that Ty does not preserve C*# smoothness in the parameters;
cf. [7].) In particular, 9,4 is C? in n. We set T = re® and consider the Taylor
expansion of 3, A in n;

2

(12) 0, A = (9,8 Aly=0) n + (0,02, Aln=o) "? +o(n?).

We want to prove that for suitably small 9 the projection of 9,4 in the iR’y’,‘,-
plane is close to —2ie;; in particular, A is transversal to M. By (2) and (3) and
since Alp—0 = {2}, when n = 0 we have 0, h; = 9y, hi = 0V, 5, k, O, hi = dps
for h,i =m+1,...,l. In particular, differentiation of v(r) = h(u(7), (), w(r))
along A and evaluation for % = 0 yields

(13) Oqvi =0 Vi#Em+1Vre D, Oyvmsr=Re(l-7)

(due to O, ,, hm41(0) = 1). By differentiating in 5 the identity u = —Tyv and
interchanging J, with Ty, we get

(14) Ogu; =0 ViFEm+L
It follows that

(15) 3,»6,,(1“ + ivi)ln:() =0 Vi#m+1.
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We prove now that
2 —
(16) (0rOivi);_y = 2.
To see this we solve £ = t(x,y"”,w) on M and write, as in the initial remark,
gi(z', 2", w) = hi(z, t(z,y",w),w), i = 1,...,m. Recall that according to
Proposition 1, we can choose g which coincides with its Levi form apart from

an error of order higher than 2. Since the discs A are attached to V U N, whence
to M, then v; = g; must hold. Double differentiation in 7 yields

(17) 33,,111'[1,:0 - Z (33,,5,191'8772,,8,,2(1

m+1<p,g<l<h,k

+2§Re(6§,kiqgi8,,2q8,,wk) + 35,hwkg¢8,,wh8,,wk],,=0) .
Since Oy zpln=0 = 0Vp # m + 1 and Fpwy|p—=0 = 0 Vk # [ + 1, we get

a’%”v’. ’77:0 :63m+15m+1 gi ,aﬁzm-H )2

+ 2%662 gi8n2m+1an11_)[+1 + 6120’+1,l‘—)l+lgi|an'IU1+1|2.

Zm41Wi41
On the other hand, we have Opzm41|p=0 = Optm+1 + i8,,tm+1|n=0 =i(1—7) due
to (13), and we also have Oywit1|p=0 = 1 — 7. It follows that
(18) (5ag,~(z'em+1 + €141, temy1 +€141)|1 — T|2)i=1,“.,m = (|1 - 7']2)61.
Note that (|1 —7|2|ga) = (2—2cos(#)) = 2(Re(1 —7)|sa). Hence by combining
(17) and (18) we get
(19) Bfmvi = 2e1Re(1 — 1) (all over A).

Differentiation of (19) in r yields (16). Hence A points to —9,A whose normal
projection to M is ie;. We go back to (12), recall (15), and conclude that

(20) pr(d,v) = —e1” + o(n®).

We produce now the manifold V; in the statement. We denote as always by
z(7) = u(r) + iv(r), resp. w(r), resp. t(7) the z, resp. w, resp. t components of
A; they are related by v (1) = h;(u(r),¢(7),w(r)), 1 < j <. For any s, € RL,
W, € (C'u‘,_', and t, € I', we solve the Bishop equation

(21) u; = =T1hi(u, (1) + to, w(r) + wo) + So-

This produces a family of discs A = Ay s ¢,w, (7) such that, for any fixed 7,, the

map
D: {1-e<r<1}xR, xTyxC2? — c
(’I", S0, o, wo) = Anosotowo ("')
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has real rank 2n — m + 1 (because the A’s are transversal to M with a uniform
estimate from below for the angle between M and A when 7 = 1). We define V;
to be the range of D in a neighborhood of z, = 0 for all small 7,. It is clear that
V; is a wedge such that V C V1 and which points to the directions of the vector
field V := —9, D|,=;. Also, by (20), for all € and for suitable 7, we can arrange
that [pr(V(z,)) —e1] < e.

We are ready to conclude. By a slight variant of the Baouendi-Treves’s Ap-
proximation Theorem, there is a neighborhood B of z, such that any CR function
f on V N B is uniformly approximated by polynomials over any compact sub-
set. To prove this, one chooses a totally real maximal submanifold of N, e.g.,
{y = h(z,0,Rew)}, “pushes it inward V" by choosing ¢t; € I' (small) and defining
S = {y = h(z,t;,Rew)}, and finally takes convolution of f with the heat kernel
along S. Next, we take any 7,, So, to, Wo but require in addition that they are
so small that 04, s t,w, C (V UN)N B. But then, for any ¢, for any IY cC T
and for a suitable compact subset K. v CC V N B, we have

Ay s b0, C Ko iffto] > g, t, €T

Then by the maximum principle on the discs Ap s ¢,u,, the sequence of poly-
nomials which approximate f in K./ will converge in the whole discs Ay s,t,w,
and will produce the extension of f to Vj. | |

Proof of Corollary 4: We choose t; € I and replace V by
Vs = {y=h(z,8t; +t,w) t €T}

(with VN B CC V, since I' is open and convex). Thus f is now continuous up
to Nj, the edge of V5. Next, we take a polyhedral approximation of Zr that is a
family of vectors a; € I" such that the cone engendered by the a;’s is proper in
Zr. By Theorem 2, f extends to a family of wedges Vj; which point to additional
directions @; with |pr(@;) — a;] < € for any ¢; moreover, the transversality of the
a; to M is uniform with respect to §. Since f is continuous in Ns, we can apply
the edge of the Wedge Theorem and obtain that f extends to a wedge V5 which
points to all the directions of Z’ CC c.h.{R*a;}. To conclude, we just let § — 0.
|

Remark 7: The above procedure of “pushing” V along 4¢; in order to get conti-
nuity of f in the edge has already been used by Tumanov in [8, Remark 2.5 and
the proof of Corollary 2.7]. It is essential to remark that the approximation the-
orem and the construction of analytic discs are stable under small perturbations,
such as pushing V along £;4.
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